Arbitrarily High-Order Exponential Cut-Off Methods for Preserving Maximum Principle of Parabolic Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum principle preserving high order schemes for convection-dominated diffusion equations

The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...

متن کامل

On the Implementation of Exponential Methods for Semilinear Parabolic Equations

The time integration of semilinear parabolic problems by exponential methods of different kinds is considered. A new algorithm for the implementation of these methods is proposed. The algorithm evaluates the operators required by the exponential methods by means of a quadrature formula that converges like O(e−cK/ ln K), with K the number of quadrature nodes. The algorithm allows also the evalua...

متن کامل

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198–213], a high-order entropy viscosity method, and the Boris–Book–Zalesak flux co...

متن کامل

Maximum - Principle - Satisfying and 1 Positivity - Preserving High Order Central Dg 2 Methods for Hyperbolic Conservation Laws

Maximum principle or positivity-preserving property holds for many mathematical 5 models. When the models are approximated numerically, it is preferred that these important prop6 erties can be preserved by numerical discretizations for the robustness and the physical relevance of 7 the approximate solutions. In this paper, we investigate such discretizations of high order accuracy 8 within the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2020

ISSN: 1064-8275,1095-7197

DOI: 10.1137/20m1333456